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Abstract: - In this paper, we present a Boussinesq type model which is able to simulate wave fields and nearshore 

currents in coastal regions characterized by morphologically complex coastal lines and irregular seabed and by 

the presence of coastal structures. The proposed model solves the integral contravariant form of the fully non-

linear Boussinesq equations, from deep water up to just seaward of the surf zones, and the non-linear shallow 

water equations, in the surf zone, on curvilinear boundary conforming grids. By the proposed model, a detailed 

representation is carried out of the hydrodynamic phenomena which contribute to generate the silting process at 

the entrance of the Cetraro harbour (Italy). Furthermore, the effects produced by the placement of a groin updrift 

of the head of the main jetty on coastal hydrodynamics and sediment transport are evaluated. 
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1 Introduction 
In the design and management of coastal structures, 

an evaluation is needed regarding the effects that 

such structures have on the sediment transport, 

seabed erosion and coastline changes. These 

phenomena are related to the combined action of 

wave motion and wave-induced nearshore currents. 

Consequently, in the design and management of 

coastal structures it is a priority to adequately 

represent the wave motion and nearshore currents. 

In order to produce an effective representation of 

the wave motion and nearshore currents, two-

dimensional wave resolving models can be seen as an 

interesting compromise between classical 

methodologies (which are based on the use of 

radiation stresses) and recent methodologies based on 

three-dimensional approaches [3][9-11]. The two-

dimensional wave resolving models are based on the 

combined solution of the Boussinesq equations for 

the representation of wave propagation from deep 

water up to just seaward of the surf zone and the non-

linear shallow water equations for the representation 

of wave propagation in the surf [15][19]. These 

models are able to take into account the non-linear 

wave-wave interactions, the fully coupled wave-

current interactions and the breaking related near 

shore currents. 

The modelling of hydrodynamics over 

computational domains representing the complexity 

of real case morphologies can be done by using 

computational grids obtained by the intersection of 

boundary conforming coordinate lines. Using 

curvilinear computational grids, the equations can be 

written in contravariant formulation [12][16]. 

Curvilinear models based on the solution of the 

contravariant non-linear shallow water equations 

have been presented by [2][4][18], whereas 

curvilinear models based on the solution of the 

contravariant Boussinesq equations have been 

presented by [7-8][17]. 

In this paper, we present a Boussinesq type model 

whose equations are written in a contravariant 

formulation and solved on curvilinear grids 

representing the complex morphology of the real case 

studies. The equations at the base of this model are 

derived starting from the fully non-linear formulation 

of the Boussinesq equations proposed by [5], which 

retain the term related to the second order vertical 

vorticity. The proposed model solves the fully 

nonlinear Boussinesq equations from deep water up 

to just seaward of the surf zones and the non-linear 

shallow water equations in the surf zones. The model 

is able to represent wave evolution in coastal regions, 

wave breaking, breaking induced longshore and rip 

currents and effects produced by offshore structures 

on the hydrodynamics. An upwind WENO 

(Weighted Essentially Non-Oscillatory) scheme [6] 

for the solution of the motion equations on 

generalized curvilinear grids is used in this work. The 

conservative terms are solved by a high-order finite 
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volume shock-capturing scheme in which an exact 

Riemann solver is involved [21]. 

The proposed model is used to numerically 

investigate the wave motion dynamics and the wave-

induced nearshore currents in the coastal region 

opposite Cetraro harbour (Italy). By the proposed 

model, a detailed representation is carried out of the 

hydrodynamic phenomena which contribute to 

generate the silting process at the entrance of the 

Cetraro harbour (Italy). Furthermore, the effects 

produced by the placement of a groin updrift of the 

head of the main jetty on coastal hydrodynamics and 

sediment transport are evaluated. 

 

 

2 Problem Formulation 
Let 𝐻 = ℎ + 𝜂 be the total local water depth, where 

ℎ is the local still water depth and 𝜂 is the local 

surface displacement. Using a Taylor expansion of 

the velocity about an arbitrary distance from the still 

water surface, 𝜎, and assuming zero horizontal 

vorticity [5][14][22], the vertical distribution of the 

horizontal velocity can be written as 

 

�⃗� = �⃗� 𝑧=𝜎 + �⃗� 2(𝑧)     (1) 

 

where �⃗� 𝑧=𝜎 is the horizontal velocity at an arbitrary 

distance from the still water level and �⃗� 2(𝑧) =
(𝜎 − 𝑧)∇[∇ ∙ (ℎ�⃗� 𝑧=𝜎)] + [(𝜎2 2⁄ ) − (𝑧2 2⁄ )]∇(∇ ∙
�⃗� 𝑧=𝜎) consists of the second order terms in depth 

power expansion of the velocity vector in which ∇ is 

the two-dimensional differential operator defined as 

∇= (𝜕 𝜕𝑥⁄ , 𝜕 𝜕𝑦⁄ ) in a Cartesian reference system. 

We define the vectors 𝑣 = 𝐻�⃗� 𝑧=𝜎 and �⃗⃗� = 𝐻�⃗̅� 2, 

in which �⃗̅� 2 is the depth averaged value of �⃗� 2(𝑧). The 

explicit expression of �⃗⃗�  is 

 

�⃗⃗� = 𝐻 {[
𝜎2

2
−

1

6
(ℎ2 − ℎ𝜂 + 𝜂2)] ∇ (∇ ∙

�⃗� 

𝐻
) +  

 [𝜎 +
1

2
(ℎ − 𝜂)]∇ [∇ ∙ (ℎ

�⃗� 

𝐻
)]}   (2) 

 

By introducing the auxiliary variable 𝑣 ∗ as 

 

𝑣 ∗ = 𝑣 + 𝐻�⃗� ′      (3) 

 

The fully non-linear Boussinesq equations 

expressed in a conservative form in a two-

dimensional Cartesian system, where the dependent 

variables are 𝐻 and 𝑣 ∗, are 

 
𝜕𝐻

𝜕𝑡
+ ∇ ∙ (𝑣 ) = −∇ ∙ (�⃗⃗� )    (4) 

 

𝜕�⃗� ∗

𝜕𝑡
+ ∇ ∙ (

�⃗� ⊗�⃗� 

𝐻
) + 𝐺∇

𝐻2

2
= 𝐺𝐻∇ℎ − �⃗� −

𝑟 

𝐻
∇ ∙ 𝑠 +  

𝜕𝐻

𝜕𝑡
�⃗� ′ − 𝐻�⃗� ′′ − 𝐻�⃗� − 𝐻�⃗⃗⃗�     (5) 

 

where ⊗ is the tensor product between vectors, 𝐺 is 

the constant of gravity, �⃗� ′, �⃗� ′′ and �⃗�  are the 

dispersive terms obtained by retaining terms up to 

𝑂(𝜇2) and 𝑂(𝜀𝜇2) in depth power expansions of the 

horizontal velocity according to [22], �⃗⃗⃗�  is the term 

related to the approximation to the second order of 

the vertical component of the vorticity according to 

[5] and �⃗�  is the bottom resistance term. The above-

mentioned terms are given by 

 

�⃗� ′ =
1

2
𝜎2 ∇ (∇ ∙

�⃗� 

𝐻
 ) + 𝜎∇ (∇ ∙ ℎ

�⃗� 

𝐻
) −  

∇ [
1

2
𝜂2(∇ ∙  

�⃗� 

𝐻
 ) + 𝜂(∇ ∙ ℎ

�⃗� 

𝐻
  )]    (6) 

 

�⃗� ′′ = ∇ [
𝜕

𝜕𝑡
(
𝜂2

2
) ∇ ∙

�⃗� 

𝐻
] + ∇ [

𝜕𝜂

𝜕𝑡
∇ ∙ (ℎ

�⃗� 

𝐻
)]   (7) 

 

�⃗� = ∇ {(𝜎 − 𝜂)(
�⃗� 

𝐻
∙ ∇) [∇ ∙ (ℎ

�⃗� 

𝐻
)] +

1

2
(𝜎2 −

𝜂2) (
�⃗� 

𝐻
∙ ∇) (∇ ∙  

�⃗� 

𝐻
)} +

1

2
∇ {[∇ ∙ (ℎ

�⃗� 

𝐻
) + 𝜂∇ ∙  

�⃗� 

𝐻
]
2

}  

       (8) 

 

�⃗⃗⃗� = 𝑖̂ [Ω (−
𝑠𝑦

𝐻
) − Θ(−

𝑟𝑦

𝐻
)] + 𝑗̂ [Ω (

𝑠𝑥

𝐻
) − Θ(

𝑟𝑥

𝐻
)]  

(9) 

 

in which Ω = [
𝜕

𝜕𝑥
(
𝑟𝑦

𝐻
) −

𝜕

𝜕𝑦
(
𝑟𝑥

𝐻
)]  and Θ =

[
𝜕

𝜕𝑥
(
𝑠𝑥

𝐻
) −

𝜕

𝜕𝑦
(
𝑠𝑦

𝐻
)]. 

Let us rewrite equations (4) and (5) in 

contravariant formulation in a two-dimensional 

system of generalized curvilinear coordinates. 

We consider the coordinate transformation 𝑥𝑙 =
𝑥𝑙(𝜉1, 𝜉2) from the Cartesian coordinate system 𝑥  to 

the curvilinear coordinate system 𝜉  (note that 

superscripts indicate the generic component and not 

powers). Let 𝑔 (𝑙) = 𝜕𝑥 𝜕𝜉𝑙⁄  be the covariant base 

vectors and 𝑔 (𝑙) = 𝜕𝜉𝑙 𝜕𝑥 ⁄  the contravariant base 

vectors. The covariant and contravariant metric 

coefficients are given respectively by 𝑔𝑙𝑚 = 𝑔 (𝑙) ∙

𝑔 (𝑚) and 𝑔𝑙𝑚 = 𝑔 (𝑙) ∙ 𝑔 (𝑚). The Jacobian of the 

transformation is given by √𝑔 = √|𝑔𝑙𝑚| where | | 

denotes the determinant of the covariant metric 

coefficients 𝑔𝑙𝑚. The transformation relationships 

between vector 𝑣  in the Cartesian coordinate system 

and its contravariant, 𝑣𝑙, and covariant, 𝑣𝑙, 

components in the curvilinear coordinate system are 

given by 

WSEAS TRANSACTIONS on FLUID MECHANICS
Giovanni Cannata, Luca Barsi, 

Chiara Petrelli, Francesco Gallerano

E-ISSN: 2224-347X 88 Volume 13, 2018



 

𝑣𝑙 = 𝑔 (𝑙) ∙ 𝑣  ; 𝑣 = 𝑣𝑙𝑔 (𝑙) 

 

𝑣𝑙 = 𝑔 (𝑙) ∙ 𝑣  ; 𝑣 = 𝑣𝑙𝑔 
(𝑙)             (10) 

 

In the following equations, a comma with an 

index in a subscript stand for covariant 

differentiation. The covariant derivative is defined as 

𝑣,𝑚
𝑙 =

𝜕𝑣𝑙

𝜕𝜉𝑚 + Γ𝑚𝑘
𝑙 𝑣𝑘, where Γ𝑚𝑘

𝑙  is the Christoffel 

symbol [1] given by 

 

Γ𝑚𝑘
𝑙 = 𝑔 (𝑙)

𝜕�⃗� (𝑘)

𝜕𝜉𝑚                 (11) 

 

Let 𝑣∗𝑙 be the 𝑙-th contravariant component of the 

vector 𝑣 ∗ defined by equation (3). 𝑣∗𝑙 reads 

 

𝑣∗𝑙 = 𝑣𝑙 + 𝐻𝑉′𝑙                (12) 

 

Let ∆𝐴 be the area of the generic surface element 

and �̃� (𝑙) = 𝑔 (𝑙)(𝜉0
1, 𝜉0

2) the contravariant base vector 

defined at point 𝑃0(𝜉0
1, 𝜉0

2) ∈ ∆𝐴. Let also 

𝜆𝑘(𝜉
1, 𝜉2) = �̃� (𝑙) ∙ 𝑔 (𝑘) be the covariant component 

of �̃� (𝑙) where 𝑔 (𝑘) = 𝑔 (𝑘)(𝜉
1, 𝜉2). The integral 

contravariant form of the continuity equation (4) and 

momentum equation (5) can be expressed as 

 

∬
𝜕𝐻

𝜕𝑡
𝑑𝐴

∆𝐴
+ ∫ 𝑣𝑚𝑛𝑚𝑑𝐿

𝐿
= ∬ (𝑤 𝑙)

,𝑙
𝑑𝐴

∆𝐴
        (13) 

 

∬ �̃� (𝑙) ∙ 𝑔 (𝑘)
𝜕�⃗� ∗

𝜕𝑡
𝑑𝐴

∆𝐴
+  

∫ (�̃� (𝑙) ∙ 𝑔 (𝑘)
𝑣𝑘𝑣𝑚

𝐻
+ 𝐺�̃� (𝑙) ∙ 𝑔 (𝑘)

𝐻2

2
)𝑛𝑚𝑑𝐿

𝐿
=  

∬ �̃� (𝑙) ∙ 𝑔 (𝑘)𝐺𝐻𝑔𝑘𝑚ℎ,𝑚𝑑𝐴
∆𝐴

− ∬ �̃� (𝑙) ∙ 𝑔 (𝑘)𝑅
𝑘𝑑𝐴

∆𝐴
  

−∬ �̃� (𝑙) ∙ 𝑔 (𝑘)
𝑣𝑘

𝐻
(𝑤𝑚),𝑚𝑑𝐴

∆𝐴
  

+∬ �̃� (𝑙) ∙ 𝑔 (𝑘)
𝜕𝐻

𝜕𝑡
𝑉′𝑘𝑑𝐴

∆𝐴
  

−∬ �̃� (𝑙) ∙ 𝑔 (𝑘)𝐻𝑉′′𝑘𝑑𝐴
∆𝐴

− ∬ �̃� (𝑙) ∙ 𝑔 (𝑘)𝐻𝑇𝑘𝑑𝐴
∆𝐴

  

−∬ �̃� (𝑙) ∙ 𝑔 (𝑘)𝐻𝑊𝑘𝑑𝐴
∆𝐴

               (14) 

 

where 𝐿 is the contour line of ∆𝐴 and 𝑛𝑚 is the 

outward unit vector normal to ∆𝐴. In equation (13) 

the second term on the left-hand side is the flux term. 

In equation (14) the second term on the left-hand side 

is the flux term, the first term on the right-hand side 

is the source term related to the bottom slope, the 

second term on the right-hand side, 𝑅𝑙, is the bottom 

resistance term approximated by a quadratic law as in 

[20]. Expressions for terms 𝑤 𝑙, 𝑉′𝑙, 𝑉′′𝑙, 𝑇𝑙 and 𝑊𝑙 

are given by 

 

𝑠𝑙 =  

(ℎ + 𝜂) {[
𝜎2

2
−

1

6
(ℎ2 − ℎ𝜂 + 𝜂2)] 𝑔𝑙𝑚 [(

𝑣𝑘

𝐻
)
,𝑘
]
,𝑚

  

+[𝜎 +
1

2
(ℎ − 𝜂)]𝑔𝑙𝑚 [(ℎ

𝑣𝑘

𝐻
)
,𝑘
]
,𝑚

}              (15) 

 

𝑉𝑙 =  

𝜎2

2
𝑔𝑙𝑚 [(

𝜕

𝜕𝑡
(
𝑣𝑘

𝐻
))

,𝑘

]

,𝑚

+ 𝜎𝑔𝑙𝑚 [(ℎ
𝜕

𝜕𝑡
(
𝑣𝑘

𝐻
))

,𝑘

]

,𝑚

  

−𝑔𝑙𝑚 [
1

2
𝜂2 (

𝜕

𝜕𝑡
(
𝑣𝑘

𝐻
))

,𝑘

+ 𝜂 (ℎ
𝜕

𝜕𝑡
(
𝑣𝑘

𝐻
))

,𝑘

]

,𝑚

  

                  (16) 

𝑉′𝑙 =
1

2
𝜎2 𝑔𝑙𝑚 [(

𝑣𝑘

𝐻
)
,𝑘
]
,𝑚

+ 𝜎𝑔𝑙𝑚 [(ℎ
𝑣𝑘

𝐻
)
,𝑘
]
,𝑚

−

𝑔𝑙𝑚 [
1

2
𝜂2 (

𝑣𝑘

𝐻
)
,𝑘

+ 𝜂 (ℎ
𝑣𝑘

𝐻
)
,𝑘
]
𝑚

  

                  (17) 

𝑉′′𝑙 = 𝑔𝑙𝑚 [
𝜕

𝜕𝑡
(
𝜂2

2
) (

𝑣𝑘

𝐻
)
,𝑘
]
,𝑚

+ 𝑔𝑙𝑚 [
𝜕𝜂

𝜕𝑡
(ℎ

𝑣𝑘

𝐻
)
,𝑘
]
,𝑚

                 (18) 

𝑇𝑙 =  

𝑔𝑙𝑚 {(𝜎 − 𝜂)(
𝑣𝑖

𝐻
[(ℎ

𝑣𝑘

𝐻
)
,𝑘
]
,𝑖

) +  

1

2
(𝑧𝛼

2 − 𝜂2) (
𝑣𝑖

𝐻
[(

𝑣𝑘

𝐻
)
,𝑘
]
,𝑖

)}

,𝑚

+  

1

2
𝑔𝑙𝑚 {[(ℎ

𝑣𝑘

𝐻
)
,𝑘

+ 𝜂 (
𝑣𝑘

𝐻
)
,𝑘
]

2

}

,𝑚

              (19) 

 

𝑊𝑙 = (𝜀𝑚𝑖𝑔𝑖𝑝
𝑣,𝑚

𝑝

𝐻
) 𝜀𝑗𝑙 𝑠𝑗

𝐻
+ (𝜀𝑚𝑖𝑔𝑖𝑝

𝑤,𝑚
𝑝

𝐻
) 𝜀𝑗𝑙 𝑣𝑗

𝐻
  (20) 

 

in which 𝜀𝑚𝑖 is equal to 
1

√𝑔
, −

1

√𝑔
 or 0 respectively if 

(𝑚, 𝑖) is an even permutation, odd permutation or if 

the two indices are equal. 

Equations (13) and (14) represent the integral 

expressions of the fully non-linear Boussinesq 

equations in contravariant formulation in which the 

Christoffel symbols are absent. These equations are 

accurate to 𝑂(𝜇2) and 𝑂(𝜀𝜇2) in dispersive terms 

and retain the conservation of potential vorticity up 

to 𝑂(𝜇2), in accordance with the formulation 

proposed by [5]. 

Equations (13) and (14) are solved by a hybrid 

finite volume-finite difference scheme [7-8]. 

Convective terms and terms related to the free surface 

elevation gradient are discretized by a high order 

finite-volume upwind WENO scheme [6]; dispersive 

terms and the term related to the second order vertical 
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vorticity are discretized by a finite-difference 

scheme. The upwind WENO scheme needs a flux 

calculation at the cell interfaces. These fluxes are 

calculated by means of the solution of a Riemann 

problem. An exact Riemann solver is used in this 

work [21]. No additional dissipative term to improve 

the modelling of breaking related energy decay and 

breaking induced near shore recirculation is used in 

this paper. 

 

 

3 Simulation of wave field and 

currents in the coastal region opposite 

the Cetraro harbour (Italy) 
The Cetraro harbour, located in a natural inlet 

subtended by Punta La Testa, was built at the 

beginning of the Fifties of the last century. Only after 

the last works performed from 2000, the harbour has 

taken on its final configuration, with water depth up 

to 5m in the wide stretch of water close to the main 

jetty, equipped with a more than 20m wide dock. 

From a management point of view, the main issue of 

the Cetraro harbour is the significant silting which 

affects the harbour entrance. 

As shown in Figure 1, from the meteo-marine 

study performed starting from the time series 

recorded by the Cetraro wavemeter, it turns out that 

the coastal storm mainly responsible for the solid 

transport phenomena (i.e. those associated to wave 

trains with significant height greater than 0.5m) 

primarily come from the West sector (occurrence 

frequency around equal to 30% of the events, 

corresponding to 110days/year), and secondarily 

from the other directional sector (less than 5% for 

each sector). 

 

 
Fig. 1: Directional annual distribution of the wave events 

in the coastal region opposite the Cetraro harbour. 

The proposed model is used to study the 

hydrodynamic fields in a coastal region opposite a 

portion of coastline including the harbour. We 

simulate the wave field and the nearshore currents 

produced by the primary sector incoming waves 

coming from 260° North, with wave height of 3m and 

a wave period of 10s. We are interested in the 

hydrodynamic fields produced by the interaction 

between the abovementioned incoming wave train 

and the coastal structures of the Cetraro harbour. The 

numerical simulations are carried out on a boundary 

conforming curvilinear grid (Figure 2) which 

reproduces the coastal region opposite Cetraro 

harbour. 

 

 
Fig. 2: Curvilinear calculation grid. Coastal region 

opposite to the Cetraro harbour. Only one coordinate line 

out of four is shown. 

 

In Figure 3(a) a plane view of an instantaneous 

wave field is shown. From this figure it is possible to 

see the refraction (variation in the direction) which 

the wave fronts coming from the West sector 

undergo, due to the interaction with the shallow 

seabeds. It is also possible to observe, in the quadrant 

delimited by 450m<X<950m and 900m<Y<2000m, 

the shoaling and breaking effects which the incoming 

wave trains undergo as they propagate towards the 

shoreline and, in the quadrant delimited by 

450m<X<1100m and 0m<Y<900m, the reflection 

effects produced by the interaction of the above-

mentioned wave trains and the vertical wall of the 

main jetty. In Figure 3(b) a detailed plane view of the 

instantaneous wave field at the harbour entrance is 

shown. From this figure it is possible to see the 

diffraction (significant rotation) which the wave 

fronts undergo at the extremity of the main jetty head. 
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Fig. 3: (a) Instantaneous wave field in the coastal region 

opposite to the Cetraro harbour. (b) Detail. 

 

In Figure 4(a) the time-averaged velocity field in 

the coastal region opposite Cetraro harbour is shown. 

From this figure it can be noticed that the wave trains 

obliquely approaching the shoreline give rise to a 

longshore current which propagates from North-

West to South-East. In Figure 4(b) a detail of the 

time-averaged velocity field at the entrance of the 

harbour is shown. From this figure, it is possible to 

see that a large counter-clockwise recirculation eddy 

forms in the area opposite the harbour entrance. 

Upstream of the reattachment point of the eddy (point 

where the main current reconnects with the 

shoreline), located South-East of the harbour 

entrance (around X=1900m and Y=500m), a 

secondary longshore current heading North-West can 

be observed. Downstream of the above-mentioned 

reattachment point, the main longshore current 

heading South-East strongly recovers. 

 

 
Fig. 4: (a) Time averaged velocity field in the coastal 

region opposite the Cetraro harbour. A vector out of ten 

is represented in the 𝑥 direction and a vector out of four is 

represented in the 𝑦 direction. (b) Detail. A vector out of 

four is represented. 

 

As can be seen in Figs. 4(a) and 4(b), the highest 

current velocities occur in the coastal region North-

West of the harbour. From this area, sediment 

particles are put into suspension by the breaking 

waves and are carried away by the heading South-

East main current. A part of the sediment load settles 

along the path of the main current; the other part 

reaches the reattachment point of the recirculation 

eddy. From this point, the sediment load is carried 

partially towards South-East by the main current and 

partially towards the entrance of the harbour by the 

secondary longshore current that characterises the 

recirculation eddy. In this eddy, the sediment load 

which is carried by the secondary current tends to 

settle close to the entrance of the harbour, where the 

wave energy and the current velocity are low. From 

WSEAS TRANSACTIONS on FLUID MECHANICS
Giovanni Cannata, Luca Barsi, 

Chiara Petrelli, Francesco Gallerano

E-ISSN: 2224-347X 91 Volume 13, 2018



this, it can be deduced that the silting which affects 

the Cetraro harbour area is due to the sediment load 

coming from the coastal region North-West of the 

harbour and the presence of the recirculation eddy 

characterised by a heading North-West longshore 

current which is able to carry part of the sediment 

load towards the entrance of the harbour. In 

summary, in the above coastal region, sediment 

transport, seabed erosion and coastline changes are 

substantially affected by the longshore current 

coming from North-West and by the recirculation 

eddy. However, it cannot be excluded the secondary 

contribution to the silting in the entrance harbour area 

due to nearshore currents induced by wave trains 

coming from South and South-West. 
 

 

 
Fig. 5: (a) Time averaged velocity field in the coastal 

region opposite the Cetraro harbour in presence of the 

groin (highlighted in red). A vector out of ten is 

represented in the 𝑥 direction and a vector out of four is 

represented in the 𝑦 direction. (b) Detail. A vector out of 

four is represented. 

Figures 5(a) and 5(b) show respectively a plane 

view and a detailed view of the time-averaged 

velocity fields that take place in the case in which, 

updrift to the head of the main jetty, a 150m long 

groin is built. From Fig. 5(a) it can be noticed that the 

groin partially intercepts the longshore current 

coming from North-West. From Fig. 5(b) it is 

observed that downdrift of the groin a small counter-

clockwise eddy takes place. Moreover, from the same 

figure it is observed that, also in this case, due to the 

obliquely incident waves, downdrift of the jetty head, 

a main longshore current (heading South-East) and a 

counter-clockwise recirculation eddy take place. As 

in the previous case, updrift of the recirculation eddy 

reattachment point, close to the shoreline, a 

secondary longshore current occurs, while downdrift 

of the reattachment point the heading South-East 

main longshore current takes place. From the 

comparison between Fig. 4(a) and Fig. 5(a) it can be 

deduced that the blocking effect produced by the 

groin on the longshore current coming from North-

West does not modify the pattern of the nearshore 

currents in the area downdrift the jetty head and in 

the one opposite the harbour entrance.  

The presence of the groin produces seabed erosion 

downdrift of the groin and erosion of the coastline 

South-East of the harbour entrance. In fact, the 

presence of the groin significantly reduces, with 

respect to the previous case, the contribution of 

sediment coming from the coastal area North-West of 

the harbour. In particular, near to the recirculation 

reattachment point, the breaking waves is significant 

and puts into suspension the solid particles, which are 

partially transported to North-West by the secondary 

longshore current and partially to South-East by the 

main longshore current. In this case, the reduction of 

sediment contribution coming from the coastal area 

updrift of the groin implies that the balance between 

the sediment coming from North-West and the 

sediment put into suspension by the breaking waves 

and carried away by the longshore currents is 

negative. From this it follows that, near to the 

reattachment point of the recirculation eddy and, 

more in general, in the coastal area South-East of the 

harbour entrance, seabed and coastline erosion take 

place. 

On the basis of these considerations, it is possible 

to deduce that the construction of the above groin, 

despite it could reduce the sedimentation of solid 

particles coming from North-West in the coastal area 

opposite the harbour entrance, induces an increase in 

the seabed erosion downdrift of the groin and 

coastline erosion in proximity of the reattachment 

point and in the coastal area South-East of the 

harbour entrance. 

WSEAS TRANSACTIONS on FLUID MECHANICS
Giovanni Cannata, Luca Barsi, 

Chiara Petrelli, Francesco Gallerano

E-ISSN: 2224-347X 92 Volume 13, 2018



4 Conclusion 
A model based on an integral and contravariant 

form of the fully non-linear Boussinesq equations 

and the non-linear shallow water equations on 

generalized curvilinear grids has been presented. The 

proposed contravariant form of the motion equations 

is devoid of the Christoffel symbols and is 

numerically integrated by means of a high-order 

shock-capturing WENO scheme that uses an exact 

Riemann solver. This model can be used for the 

simulation of wave fields and nearshore currents in 

the coastal region characterized by morphologically 

complex coastal lines and irregular seabed and by the 

presence of coastal structures.  

The proposed model has been applied to a real 

case of engineering interest. With this model, wave 

fields and wave-induced nearshore currents have 

been simulated in the coastal region opposite Cetraro 

harbour (Italy). The numerical results give a 

representation of the hydrodynamic phenomena 

which contribute to generate the silting process at the 

entrance of the Cetraro harbour. Finally, wave fields 

and wave-induced nearshore currents have been 

simulated in the presence of a 150m long groin placed 

updrift of the head of the main jetty. Such simulations 

have been used to evaluate the effects induced by the 

groin on the sediment transport phenomena.  
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